SAMPLE APPROVAL SHEET

DESCRIPTIONS:

•2.0x1.25x0.7mm SMD LED

•Emitting Color: Blue

•Lens Color:Water Clear

CUSTOMER:

MASON P/N: L170B-SBC

CUSTOMER P/N:

CUSTOMER APPROVED SIGNATURES

X	APPROVED BY	CHECKED BY

PRELIMINARY SPEC 2.0x1.25mm SMD CHIP LED

PART NO: L170B-SBC BLUE

ATTENTION

OBSERVE PRECAUTIONS FOR HANDLING DISCHARGE SENSITIVE DEVICES

Features

- 2.0mmx1.25mm SMT LED, 0.7mm THICKNESS.
- WIDE VIEWING ANGLE.
- IDEAL FOR BACKLIGHT AND INDICATOR.
- VARIOUS COLORS AND LENS TYPES AVAILABLE.
- PACKAGE : 3000PCS / REEL.
- RoHS COMPLIANT.

Package Dimensions

Applications

- Automotive: backlighting in dashboard and switch.
- Telecommunication: indicator and b lighting in telephone and fax.
 Flat backlight for LCD switch and symbol. back-

Notes:

- 1. All dimensions are in millimeters.
- 2. Tolerance is ±0.15 unless otherwise noted.
- 3. Specifications are subject to change without notice.

Device Selection Guide

Part No.	Cł	Lens color	
L 170B-SBC	Material	Emitted color	Water clear
	(InGaN)	BLUE	Water clear

Absolute Maximum Ratings at T_A=25°C

Parameter	Symbol	Value	Unit
Power Dissipation	Pd	95	mW
Forward Current	lF	20	mA
Peak Forward Current*1	I FP	100	mA
Reverse Voltage	VR	5 V	
Operating Temperature	Topr	-40°C To +85°C	
Storage Temperature	Tstg	-40°C To +85°C	

Notes:

*1: Pulse width≤0.1ms, Duty cycle≤1/10

Parameter	Symbol	Min.	Тур.	Max	Unit	Test Conditions
Forward Voltage	VF	2.8	_	3.6	V	IF=20mA
Reverse Current	lr			10	μA	VR=5V
Dominate Wavelength	λD	464	_	473	nm	IF=20mA
Luminous Intensity	Iv	62	_	170	mcd	IF=20mA
Viewing Angle	201/2	_	120	_	Deg.	IF=20mA

Electrical / Optical Characteristics at TA=25°C

Remarks:

If special sorting is required (e.g. binning based on forward voltage, luminous intensity, or chromaticity), the typical accuracy of the sorting process is as follows:

1. wavelength: ±1nm

2. Luminous Intensity: ±15%

3. Forward Voltage: ±0.1V

• Typical Electrical/Optical Characteristics Curves

Soldering Profile

Reflow Soldering Profile For Lead-free SMT Process.

VF Rank

Rank	VF	Condition			
. Contraction of the second seco	Min	Мах			
G	2.8	3.0			
Н	3.0	3.2	IF=20mA		
J	3.2	3.4			
К	3.4	3.6			

Tolerance:±0.1V

λD Rank

			A
Dank	λD(Condition	
Rank	Min	Max	Condition
4	464	467	
5	467	470	IF=20mA
6	470	473	

Tolerance:±1nm

IV Rank

/ j

	IV(r		
Rank	Min	Max	Condition
	62	80	
М	80	100	IF=20mA
N	100	130	
Р	130	170	

Tolerance:±15%

CAUTIONS:

1.Storage

- In order to avoid the absorption of moisture, it is recommended to store in the dry box (or desicca tor) with a desiccant. Otherwise, to store them in the following environment is recommended. Humidity: 60%HR max.
 - Temperature: 5°C~30°C
- Attention after opened

However LED is corresponded SMD, when LED be soldered dip, interfacial separation may affect The light transmission efficiency, causing the light intensity to drop. Attention in followed.

- a. After opened and mounted, the soldering shall be quickly.
- b. Keeping of a fraction

Temperature: 5°C~40°C

Humidity: less than 30%

- In case or more than 1 week passed after opening or change color of indicator on desiccant compo nents shall be dried 10-12hr. at $60^{\circ}C \pm 3^{\circ}C$.
- In case of supposed the components is humid, shall not be dried dip-solder just before. 100Hr at 80°C±3°C or 12Hr at 100°C±3°C

2.ESD (Electrostatic Discharge)

Static Electricity or power surge will damage the LED.

- The following procedures may decrease the possibility of ESD damage.
- All production machinery and test instruments must be electrically grounded.
- Use a conductive wrist band or anti-electrostatic glove when handling these LEDs.
- Maintain a humidity level of 50% or higher in production areas.
- Use anti-static packaging for transport and storage.

Revision History:

_	Rev. No.	Change description	Date	Prepared by	Checked by	Approved by
_	A/0	New-made specification	2007/8/1			
1	A/1	Revision rank	2008/1/21			
	A/2	Revision intensity rank	2011/03/21			